EPA Region 5 Records Ctr. 345491

September 13, 2002 Project No. 0081300-04

JUNE 2002 GROUNDWATER MONITORING REPORT

Yeoman Creek Landfill Superfund Site Waukegan, Illinois

Prepared For:

Mr. John Seymour, P.E. YRCG Project Coordinator GeoSyntec Consultants 55 W. Wacker Drive, Suite 1100 Chicago, Illinois 60601

CHICAGO, ILLINOIS
GRIFFITH, INDIANA
FORT WORTH, TEXAS
GLEN ELLYN, ILLINOIS
SOUTH BEND, INDIANA
SPRINGFIELD, ILLINOIS
ALBUQUERQUE, NEW MEXICO

WEAVER
BOOS
GORDON

September 13, 2002 File 0081300-04

GEO-ENVIRONMENTAL ENGINEERS
AND SCIENTISTS

Mr. John Seymour, P.E. YCRG Project Coordinator GeoSyntec Consultants 55 W. Wacker Drive, Suite 1100 Chicago, IL 60601

Subject: JUNE 2002 GROUNDWATER MONITORING REPORT Yeoman Creek Landfill Superfund Site Waukegan, Illinois

Dear Mr. Seymour:

Weaver Boos & Gordon, Inc. (Weaver Boos), sub-consultant to TJ Lambrecht Construction, Inc., has completed the above referenced monitoring for the Yeoman Creek Landfill Superfund Site located in Waukegan, Illinois. The Yeoman Creek Superfund Site (YCS Site) includes Yeoman Creek Landfill, Edwards Field Landfill, and Rubloff Landfill.

June 2002 Monitoring Event

Weaver Boos was represented at the YCS Site to conduct the necessary fieldwork for groundwater and leachate sample collection and groundwater level measurements from June 21, 2002 to July 2, 2002, and on July 18, 2002. The subject monitoring event included a total of 72 monitoring locations as follows: 41 groundwater wells, 3 leachate wells, and 28 landfill gas probes (see **Figure 1**). A summary of the June 2002 Monitoring Event is provided as **Table 1**. Pursuant to United States Environmental Protection Agency (USEPA) Correspondence dated May 30, 2002, field parameters were obtained, but groundwater samples for subsequent laboratory analysis were not collected from the following locations:

MW-301	MW-C	MW-F	MW-405
MW-B	MW-D	MW-G	MW-406

Field work was performed in accordance with the site specific Field Sampling Plan (FSP) prepared by GeoSyntec Consultants, dated August 2001, and the Pre-Design Data Collection Activities Quality Assurance Project Plan (QAPjP) prepared by Parsons Engineering Sciences, Inc. dated August 1999. Deviations from the FSP are discussed in the following sections.

A representative from R.F. Weston was present on-site to oversee sampling activities and collect split samples on behalf of the USEPA. Samples collected by Weaver Boos were submitted to Severn Trent Laboratories in North Canton, Ohio, and analyzed for volatile organic compounds (VOCs), total and dissolved Metals and Cyanide.

Groundwater and Leachate Sampling

Depth to groundwater measurements were taken over a two day period at the beginning of the sampling event, prior to purging any of the wells so as to obtain measurements that would provide an accurate representation of the groundwater and leachate flow in the vicinity of the site (see **Table 2**).

The wells were purged with dedicated tubing and a peristaltic pump using a low-flow technique. A flow through cell was used to measure pH, temperature, dissolved oxygen, conductivity, and oxidation-reduction potential. Turbidity was measured using a separate turbidity meter. A colorimeter and mixing agents were used to field test for ferrous iron in accordance with the FSP. The wells were purged until field measurements were stable in accordance with the FSP. Field parameters are considered stabilized when three consecutive readings vary less than ± 0.1 unit pH, ± 10 percent of conductivity, ± 0.5 °C, and less than 10 NTU for turbidity. The final field measurements collected during purging are included on **Table 3**.

Groundwater samples were collected from 19 Shallow Zone monitoring wells, 14 Lower Outwash monitoring wells and leachate samples were collected from three leachate monitoring wells (See **Table 1**). Monitoring wells were purged and sampled in general accordance with the FSP. Samples were analyzed for site specific VOCs, metals (total and dissolved phases), and cyanide.

In accordance with the QAPjP, quality assurance/quality control (QA/QC) samples were collected during the sampling event. Six duplicate samples, five field blanks, five trip blanks,

two equipment blanks and three matrix spike/matrix spike duplicates were collected for laboratory analysis.

As noted above, although groundwater samples were not collected from MW-301, MW-B, MW-C, MW-D, MW-F, MW-G, MW-405 and MW-406, field parameters were still measured at these locations.

Laboratory Analytical Results

Samples obtained from thirty-three (33) groundwater and three (3) leachate wells were analyzed for VOCs, total and dissolved metals, and cyanide. A summary of laboratory analytical results, field parameters, and results of the comparison to 35 IAC 620.410 Standards is included on **Table 3**. Exceedances of the 35 IAC 620.410 Standards are also summarized in **Figures 2** and **3**.

Leachate Wells

Leachate wells LW-101, LW-102 and LW-103, located on Edwards Field Landfill, were sampled during the subject sampling event. Leachate Wells LW-201 through 204, located on Yeoman Creek Landfill, were already abandoned at the time of sampling. The following parameters were detected in the leachate wells at concentrations above the Groundwater Quality Standards for Class I Potable Groundwater Resources (35 IAC 620.410):

Parameter	Units	LW-101	LW-102	LW-103
Benzene	ug/L		X	
Iron, total	mg/L	X	X	X
Lead, total	mg/L		X	X
Manganese, total	mg/L	X	X	X
Iron, dissolved	mg/L	X		X
Manganese, dissolved	mg/L	X	X	X

Lower Outwash Wells

The following constituents were detected in Lower Outwash wells above the Groundwater Quality Standards for Class I Potable Resources (35 IAC 620.410):

Location	Ni _T	Ni _D	Fe _D	Fe _T
MW-201	X	X		
MW-209			X	
MW-401			X	X

- Nickel, Dissolved - Nickel, Total Ni_{D} Ni_T - Vinyl Chloride VC FeD - Iron, Dissolved - Arsenic, Total Fe_T - Iron, Total As_T Mn_T - Manganese, Total $\mathbf{B}_{\mathbf{T}}$ - Boron, Total - Arsenic, Dissolved Fep - Iron, Dissolved AsD - Boron, Dissolved Mn_p - Manganese, Dissolved $\mathbf{B}_{\mathbf{D}}$ Ben - Benzene

Shallow Zone Wells

The shallow zone wells consist of wells screened in the lacustrine clays, organics, fluviolacustrine sands and upper outwash. The following constituents were detected in shallow zone wells above the Groundwater Quality Standards for Class I Potable Resources (35 IAC 620.410):

Location	Fe _T	Mn _T	Fe _D	Mn _D	Ben	VC	As _T	\mathbf{B}_{T}	As _D	$\mathbf{B}_{\mathbf{D}}$
MW-102	X	X	X	X						
MW-104	X		X							
MW-106	X	X	X	X						
MW-110	X		X							
MW-111	X		X							
MW-202		X		X						
MW-206		X		X			X	X	X	X
MW-208	X	X	X	X						
MW-210	X	X	X	X		X				
MW-211	X		X	X						
MW-212	X	X	X	X						
MW-215	X	X	X	X	X					
MW-216	X	X	X	X		X				
MW-402	X	X		X				X		X

During the subject sampling event, vinyl chloride was observed in MW-210 at a concentration of 11 ug/L, similar to November 2001 where it was detected at 9.4 ug/L. Also, vinyl chloride was

not detected at or above the laboratory reporting limit of 1 ug/L in June 2002 at MW-103, where in November 2001 it was observed at a concentration of 5.4 ug/L.

Bedrock Well

MW-403 is the only monitoring well screened in bedrock. No exceedances of the Groundwater Quality Standards for Class I Potable Resources (35 IAC 620.410) were identified for this well during the subject sampling event. Low flow sampling utilizing a peristaltic pump was unable to be accomplished at MW-403, because the depth to groundwater was 102.25' below ground surface. Therefore, MW-403 was purged and sampled using a polyethylene bailer consistent with previous sampling rounds.

Potentiometric Surface Maps

The depth to groundwater data from the wells screened within the lower outwash was used to generate a groundwater potentiometric surface map. As shown on **Figure 4**, groundwater flow for the lower outwash is towards the east. The depth to groundwater data from the leachate wells and the landfill gas probes was used to create **Figure 5** Potentiometric Surface Map for Leachate Wells. The leachate contours at Edwards Field show a leachate gradient extending to the west and northwest.

Data Validation

Exponent of Lake Oswego, Oregon completed validation of the analytical results. Full data validation was completed on ten percent of the data, and the remainder of the data was reviewed for holding times, sample temperature, sample, receipt, chain-of-custody, etc. Data validation was completed in accordance with Laboratory Data Validation Functional Guidelines for Evaluating Organic Analysis (USEPA, February 1994), and Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analysis (USEPA, February 1994). Full data validation was performed for analytical results from the following wells: MW-103, MW-210, MW-216, MW-A, MW-E2, and LW-101. Exponent's data validation report is included as Attachment 1. Spreadsheets that include both the laboratory and data validation qualifiers are included on the enclosed compact disc. The data validation did not alter the analytical results originally reported by the laboratory, but merely added certain qualifiers to the data. Therefore, results of the data validation do not influence the analytical results summarized on Table 4.

We trust that this information is sufficient for your needs at this time. If you have any questions, comments, or suggestions regarding the data presented in this groundwater report, please contact us at your convenience.

Very truly yours,

Weaver Boos & Gordon, Inc.

Brittany Griffin Staff Scientist

Michael B. Maxwell, LPG Project Manager

Suchel B. Mexuell

Attachments:

Tables 1-4

Figures 1-5

Attachment 1 – Data Validation Report (includes one CD containing spreadsheets with data qualifiers)

Table 1
Summary of Quarterly Monitoring - June 2002
Yeoman Creek Landfill
Waukegan, Illinois

Sample	Water	Field	VOCs, Metals,
Description	Levels	Parameters	& Cyanide*
Groundwater Monitoring W	ells		
MW-101	X	X	X
MW-102	X	X	X
MW-103	X	X	X
MW-104	X	X	X
MW-105	X	X	X
MW-106	X	X	X
MW-107	X	X	X
MW-108	X	X	X
MW-109	X	X	<u> </u>
MW-110	X	X	X
MW-111	X X	<u> </u>	X
MW-201	X	X	<u>X</u>
MW-202	X	X	X
MW-202	X	X X	- X X
MW-204	X	X	X
			X
-MW-205	X	X	
MW-206	X	X	X
MW-207	X	X	X
MW-208	X	X	X
MW-209	X	X	X
MW-210	XX	X	X
MW-211	X	X	X
MW-212	X	X	X
MW-213	<u>X</u>	<u>X</u>	X
MW-214	X	X	X
MW-215	X	X	X
MW-216	X	X	X
MW-301	X	X	
MW-401	X	X	X
MW-402	X	X	X
MW-403	X	X	X
MW-405	X	X	
MW-406	X	X	
MW-A	X	X	X X
MW-B	X	X	
MW-C	X	X	
MW-D	X	X	
MW-E1	X	\mathbf{x}	X
MW-E2	<u>X</u>	X	$\frac{x}{x}$
MW-F	<u>X</u>	X	1
MW-G	X	X	
Leachate Monitoring Wells		/\	
LW-101	X	X	X
LW-102	<u>X</u>	X	X
LW-102 LW-103			
L 44 - 102	X	X	X

^{*} Samples were analyzed for VOCs, metals (total and dissolved phases) and cyanide as listed on Table A2, Initial Parameter List, Yeoman Creek Landfill Superfund Site, Waukegan, Illinois, provided by GeoSyntec Consultants.

Table 1 Summary of Quarterly Monitoring - June 2002 Yeoman Creek Landfill Waukegan, Illinois

Sample	Water	Field	VOCs, Metals,
Description	Levels	Parameters	& Cyanide*
Landfill Gas Probes			· · · · · · · · · · · · · · · · · · ·
LFG-101	X		
LFG-102	X		
LFG-103	X		
LFG-104	X		
LFG-105	X		
LFG-106	<u>X</u>		
LFG-107	X		
LFG-108	X		
LFG-109	X		
LFG-110	X		
LFG-111	X		
LFG-201	X		
LFG-202	X		
LFG-203	X		
LFG-204	X		1
LFG-205	<u>X</u>		- · - · - · · - · - · · · · · · · · · ·
LFG-206	X		· · · · · · · · · · · · · · · · · · ·
LFG-207	X		
LFG-208	X		
LFG-211	X		
LFG-216	X		
LFG-218	X		†
LFG-219	X	· - · · · · · · · - · · - ·	
LFG-220	X		·
LFG-221	X		
LFG-222	X	T	
LFG-223	X		
LFG-224	X		

^{*} Samples were analyzed for VOCs, metals (total and dissolved phases) and cyanide as listed on Table A2, Initial Parameter List, Yeoman Creek Landfill Superfund Site, Waukegan, Illinois, provided by GeoSyntec Consultants.

Table 2
Summary of Groundwater Elevations
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

Location ID	Top of PVC*	Total Well Depth*	Depth to Water 06-02	Groundwater Elevation
	(MSL)	(feet)	(feet)	00-07 (MSL)
Shallow Zone Wells				
Lacustrine Clays,	Lacustrine Clays, Organics, Sand Lenses	ises		
MW-204	662.45	22.54	15.10	647.35
MW-206	663.75	21.18	9.70	654.05
MW-208	659.31	21.36	8.10	651.21
MW-402	657.25	20.11	4.50	652.75
Fluviolacustrine Sands	ands			
MW-102	653.53	23.71	6.40	647.13
MW-104	652.53	25.12	5.00	647.53
MW-106	654.96	20.09	09.9	648.36
MW-107	656.46	21.59	9.40	647.06
MW-108	654.59	25.15	10.30	644.29
MW-110	653.18	25.05	5.40	647.78
MW-111	655.64	25.20	9.00	646.64
MW-202	10.099	27.52	8.00	652.01
MW-210	18.159	25.06	9.27	642.54
MW-211	658.81	41.79	10.50	648.31
MW-212	658.87	18.76	11.20	647.67
MW-214	653.54	24.18	5.10	648.44
MW-215	654.80	20.09	00.9	648.80
MW-216	657.47	24.40	10.00	647.47
Upper Outwash				
MW-406	61.199	33.07	17.41	643.78
MW-E1	664.75	33.80	20.85	643.90
MW-G	664.96	23.88	6.10	658.86

^{• -} Top of PVC and Total Well Depth Information for groundwater wells provided by Parsons Engineering Sciences, Inc.

Table 2
Summary of Groundwater Elevations
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

Location ID	Top of PVC*	Total Well Depth*	Depth to Water	Groundwater Elevation
	(MSL)	(feet)	(feet)	06-02 (MSL)
Landfill Gas Probes				
LFG-101	652.77	9.80	7.40	645.37
LFG-102	654.01	9.90	08.9	647.21
LFG-103	655.37	11.20	9.40	645.97
LFG-104	654.23	10.00	09.6	644.63
LFG-105	654.55	8.70	8.30	646.25
LFG-106	653.93	10.30	9.20	644.73
LFG-107	652.64	10.20	9.10	643.54
LFG-108	654.44	9.90	9.40	645.04
LFG-109	652.39	7.40	5.60	646.79
LFG-110	652.19	10.94	8.96	643.23
LFG-111	654.01	10.00	9.40	644.61
LFG-201	89.099	10.30	9.80	650.88
LFG-202	662.33	9.90	7.70	654.63
LFG-203	663.76	10.90	9.40	654.36
LFG-204	658.34	11.00	10.00	648.34
LFG-205	656.72	06.6	9.40	647.32
LFG-206	659.46	10.30	9.80	649.66
LFG-207	657.02	10.30	9.80	647.22
LFG-208	657.80	10.40	9.90	647.90
LFG-211	660.81	10.20	9.00	651.81
LFG-216	656.62	10.10	9.60	647.02
LFG-218	662.19	10.20	9.90	652.29
LFG-219	661.83	10.10	09.6	652.23
LFG-220	660.32	10.10	Dry	Dry
LFG-221	660.04	10.20	9.30	650.74
LFG-222	663.38	10.00	9.30	654.08
LFG-223	660.83	9.90	9.00	651.83
LFG-224	665.28	09.6	9.20	656.08

^{* -} Top of PVC and Total Well Depth Information for groundwater wells provided by Parsons Engineering Sciences, Inc.

Summary of Analytical Results Second Quarter 2002 Groundwater Monitoring Event Yeoman Creek Landfill Waukegan, Illinois

Parameter Name	Units	35 IAC 620.410 Close I	Federal	MW-101	MW-102	MW-103	MW-104	MW-105	MW-106	MW-107	MW-108	MW-109	MW-110	MW-111	MW-201	MW-202	MW-203	MW-204	MW-205
		Standard	- WACE	LO	SZ	ro	SZ	70	SZ	SZ	ZS	07	SZ	ZS	07	ZS	07	ZS	70
Field Parameters																			
Dissolved Oxygen	mg/L	ΑN	NA	0.00	0.41	0.00	NA	5.05	8.60	0.00	5.60	0.00	0.03	00.00	0.04	0.00	0.63	0.00	0.00
Ferrous Iron	ıııdd	۲Z	A.N.	3.27	9.20	0.51	6.30	80.0	15.60	3.11	2.08	2.75	5.60	14.92	0.44	4.65	0.00	1.33	4.19
Hd	S.U.	6.5-9.0	NA	7.17	7.05	8.33	7.08	7.27	6.73	7.05	7.39	7.19	7.15	6.78	7.35	6.78	8.07	7.32	7.08
Redox Potential	Λm	۲N	ΥZ	-105	-101	46	-113	96-	06-	-104	86-	-110	-100	-103	59	-103	-21	-130	-120
Specific Conductivity	umhos	ΥZ	Ϋ́Z	1430	1130	1080	2210	1140	1730	915	939	1410	1410	1530	1640	5190	5060	1840	1570
Temperature	deg. C	ΑN	Ϋ́Z	12.31	10.87	12.67	11.08	12.20	11.27	86.01	10.83	12.23	12.97	12.06	12.40	12.70	13.82	13.50	14.86
Turbidity	ntu	ΑN	_	9.48	6.03	5.49	5.06	4.54	5.86	11.00	3.27	1.38	31.50	3.94	7.16	2.87	1.23	2.89	8.64
Volatile Organic Compounds																			
1.1.2.2-Tetrachloroethane	ug/L	AN	ΥZ	⊽	~	∀	7	⊽	7	17	7	7		~	₹	1>	7	7	⊽
1.2-Dichlorobenzene	ng/L	009	009	7	⊽	⊽	⊽	⊽	7	⊽	7	~	⊽	⊽	7	⊽	⊽	⊽	₹
1,2-Dichloroethane	ng/L	5	5	7	⊽	~	⊽	~	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽
1.2-Dichloroethene	ng/L	70	70	⊽			⊽	7	⊽	7	7	V	⊽	⊽	7	ī	⊽	⊽	⊽
1,4-Dichlorobenzene	ng/L	7.5	7.5	>	1>	7	7		7	1	~	⊽	5	~	⊽	~	>	1>	⊽
2-Butanone	ng/L	NA	NA	<10	<10	<10	>10	01>	<10	01>	×10	01>	01>	01×	01>	<10	01>	<10	01>
4-Methyl-2-Pentanone	J/ñn	NA	NA	<10	01>	>10	<10	01>	<10	<10	01>	~10 ~10	<10	<10	01>	<10	<10	<10	<10
Acetone	ng/L	ΥN	NA	<10	<10	<10	<10	<10	<10	<10	v-10	01>	<10	<10	o1>	<10	<10	<10	<10
Benzene	ng/L	5	5	- l>	-1>	- V	V	7∨	1>	ŀ	⊽	1	⊽	⊽	.	V	1	>	~
Bromodichloromethane	ng/L	NA	ΝΆ	7	-	7	~	<1	1>	7	⊽	⊽	-		- -	1>	1>	1>	·
Chlorobenzene	ng/L	NA	100	⊽	⊽	-1∨	V 1	<1	\ \ !	-	. 1>	V	·	-	>	-1>	Ī>	⊽	⊽
Chloroethane	ng/L	ΥN	Ϋ́	7	⊽	· ·	1.5	>		-	-	۱>	>	>	-	<1	l>	⊽	⊽
Chloroform	ng/L	NA	NA	1>	~	-	⊽	⊽	⊽	7	⊽	⊽	~	⊽	⊽	⊽	7		>
Ethylbenzene	ng/L	700	700	7	7	₹	⊽	⊽	⊽	7	⊽	⊽	⊽	⊽	7	1	1.	⊽	⊽
Freon 113	ug/L	NA	NA	V	⊽	V	7	- 1>	. ▽	⊽	⊽	⊽	~	⊽	⊽	⊽	7	⊽	⊽
Methylene chloride	7/8n	5	5	>		7	⊽	⊽	~	7	⊽	⊽	7	7	⊽	⊽	~	⊽	7
Styrene	ng/L	001	100	 V	<1			- : v	· ·	IV	⊽	1>	√	7	l	1>	1>	1>	\ \
Tetrachloroethene	ng/L	5	5	7	<1>	1>	!>	7	V	1>	⊽	7	7	⊽	1>	Ī	1>	>	>
Toluene	ng/L	1000	0001			ŀ	~	۲>		- -	⊽	1>	7		1>	<1	\ \ !	∀	· ·
Trichloroethene	ug/L	5	5	⊽	7	7	<u>-</u>	</td <td>7</td> <td><u>_</u></td> <td>-</td> <td>₹</td> <td>1></td> <td>1></td> <td>⊽</td> <td></td> <td>7</td> <td>-1 -</td> <td>\ \</td>	7	<u>_</u>	-	₹	1>	1>	⊽		7	-1 -	\ \
Vinyl chloride	T/An	2	7	- - -	-1>	<u>-</u>	<u>_</u>	7	7	~	<u></u>	⊽	⊽	7	7	7	<u></u>	- 	· ·
Xylenes, total	ng/L	10000	00001		~	~	-1>	·	-1>	<1>	<	>	1>		1>	>		-	⊽
Metals/Inorganics - Total																			
Aluminum, total	mg/L	ΑN	ΥZ	<0.2	0.45	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Antimony, total	mg/L	900.0	900.0	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic, total	mg/L	0.05	0.01	10.0>	<0.01	10.0>	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01
Barium, total	mg/L	2	2	<0.2	<0.2	<0.2	89.0	0.34	0.25	<0.2	<0.2	<0.2	<0.2	0.36	0.22	0.65	<0.2	<0.2	0.65
Beryllium, total	mg/L	0.004	0.004	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron, total	mg/L	2	Y.	<0.2	0.24	0.30	1.20	0.28	0.24	0.25	<0.2	0.34	0.41	0.51	<0.2	0.63	0.27	<0.2	0.34
Cadmium, total	mg/L	0.005	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium, total	mg/L	N.A	NA V	150	137	44.4	49.8	107	292	82.5	110	125	129	188	157	408	50.8	82.3	158
				Notes:															

Notes:
Fron 113 is 1.1.2-Trichloro-1.2.2-trifluoroethane.
Fron 113 is 1.1.2-Trichloro-1.2.2-trifluoroethane.
Exceedance of 35 IAC 620.410 Class I Standards indicated by
Exceedance of 35 IAC 620.410 Class I Standards and Federal Drinking Water MCLs indicated by
NA - Not Awaifable
NS - Not Sampled
LO - Lower Outwash
SZ - Shallow Zone

0.26

o shame most jun 15 June 2002 Table 3 (Analytical Sum)

Summary of Analytical Results
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

Parameter Name	Units	35 IAC 620.410 Class I	Federal	MW-101	MW-102	MW-103	MW-104	MW-105	MW-106	NW-107	MW-108	MW-109	MW-110	MW-111	MW-201	MW-202	MW-203	MW-204	MW-205
		Standard		70	SZ	Γ0	SZ	T0	SZ	ZS	ZS	ГО	ZS	ZS	Γ0	SZ	Γ0	ZS	T0
Metals/Inorganics - Total (continued)	ntinued)																		
Chromunn, total	mg/L	0.1	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<:0.005	<0.005	<0.005	<0.005	0.036	<0.005	<0.005	<0.005	<0.005
Cobalt, total	mg/L	-	ΝΑ	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper, total	mg/L	0.65	1.3	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Cyanide, total	my/L	0.02	0.2	<0.01	<0.01	<0.01	<0.01	10.0>	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01
fron, total	mg/L	5	NA	1. +	8.4	0.28	7.3	3.5	17.8	4.0	2.4	3.1	0.9	8.9	0.36	4.4	<0.1	2.8	4.2
Lead, total	mwL	0.0075	0.015	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Magnesium, total	J/Sui	Y Z	V V	85.1	34.6	70.6	74.0	73.4	112.0	38.2	59.4	108.0	83.6	626	† 69	277	48.7	155	901
Manganese, total	J/But	0.15	Ϋ́Z	0.064	0.17	<0.015	0.021	0.019	0.29	0.15	0.079	0.016	0.022	0.074	0.1	0.48	<0.015	0.062	<0.015
Mercury, total	mg/L	0.002	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Nickel, total	mg/L	0.1	Ϋ́	×0.04	<:0.04	<0.04	<0.05	<0.04	<0.04	<0.0>	<0.04	<0.0>	<0.04	+ 0.0>	0.5	40.0×	<0.04	<0.0>	<0.04
Potassium, total	mg.L	AN	ΥZ	Ş	\$	22.1	102	17.1	5.9	15.9	\$	\$	23.5	7.9	5.1	33.4	\$	6.5	♦
Selenium, total	mg/L	0.05	0.05	<0.005	<0.005	<0.005	<0.005	0.0057	<0.005	<0.005	<0.00>	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sodium, total	ng/L	ΥN	Ϋ́	132	148	041	239	67.9	80.1	43.2	64.5	601	123	62.4	210	159	26.8	227	101
Vanadium, total	mg/L	A'N	Ϋ́	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Zinc, total	T/Siu	5	AN.	<0.02	<0.02	0.043	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Metals - Dissolved									•									:	
Aluminum, dissolved	ng/L	A'N	Ϋ́	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.97
Antimony, dissolved	mg/L	0.006	900'0	<0.01	<0.01	<0.01	<0.01	÷0.0	10.0>	<0.01	<0.01	<0.01	<0.01	<0.01	10.0>	<0.01	<0.01	<0.01	<0.01
Arsenic, dissolved	myT	0.05	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01
Barium, dissolved	mg/L	2	2	<0.2	<0.2	<0.2	0.65	0.34	0.25	<0.2	<0.2	<0.2	<0.2	0.38	0.22	0.58	<0.2	<0.2	9.0
Beryllium, dissolved	myL	0.004	0.004	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron, dissolved	lng/L	2	AN	<0.2	0.21	0.3	Ξ	0.28	0.28	0.25	<0.2	0.34	0.41	0.54	0.14	0.7	0.27	<0.2	0.63
Cadmium, dissolved	mg/L	0.005	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Calcium, dissolved	myL	ΥZ	ΥN	152	144	45.2	45.8	107	288	81.7	108	125	132	701	159	375	51.1	74.9	155
Chronium, dissolved	ny/L	0.1	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt, dissolved	mg/L	-	۲Z	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper, dissolved	mg.r	0.65	1.3	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0 025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Iron, dissolved	mg/L	5	Ϋ́	4.1	8.6	<0.1	9.9	3.4	17.6	3.9	2.4	3.1	5.5	9.4	<0.1	1.9	<0.1	2.2	3.9
Lead, dissolved	mg/L	0.0075	0.015	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Magnesium, dissolved	mg/L	Ϋ́	Ϋ́	86.2	37.1	71.3	68.2	73.3	111	38.1	58.3	109	85.5	103	6.89	254	49.1	145	101
Manganese, dissolved	mg/L	0.15	Y.Z	0.065	0.17	<0.015	0.015	0.019	0.28	0.15	0.073	0.016	0.022	0.079	0.11	0.44	<0.015	0.055	<0.015
Mercury, dissolved	mg/L	0.002	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Nickel, dissolved	mg/L	0.1	ΥN	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.0>	<0.04	<0.04	<0.04	<0.04	0.39	<0.04	<0.04	<0.04	<0.04
Potassium, dissolved	mg/L	ΥN	Y.	\$	♡	22.4	97.8	6.91	5.9	16.1	<\$	<5	24	8.4	5	31.4	<\$	6.1	\$
Selenium, dissolved	myL	0.05	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sodium, dissolved	mg/L	Ϋ́Z	AN	133	152	Ξ	223	6.99	18	43.4	64.3	601	125	68.5	208	703	27	212	94.2
Vanadium, dissolved	mg/L	AN	NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Zinc. dissolved	mg/L	2	ΝA	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
				Notes:					1										

0.26

Freed 113 is 1,1,2-Trichloro-1,2,2-trifluoroethane.

Exceedance of 35 IAC 620.410 Class I Standards indicated by
Exceedance of 35 IAC 620.410 Class I Standards and Federal Drinking Water MCLs indicated by
NA - Not Available
NS - Not Sampled
LO - Lower Outwash
SZ - Shallow Zone

o home 1001 300 15 June 2002 Table 3 (Analytical Suni)

Summary of Analytical Results
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

titiane ug/L 500 000 01 01 01 01 01 01 01 01 01 01 01	The color The	Section Sect	the ug/L 5 5 5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	The color The	The color The	The color of the	The color of the
Octoberizere Ug/L 75 75 15 17 17 17 17 17	ene ug/L 75 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	The care The care	The case The case	The case The case	The case	The case	The case The case
2-Pentanone ugL NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11	Harrier Harr	NA	NA	National National	NA NA C 0	NA	NA NA C10
UNIT VIV	March State March Marc	March Marc	UNIT S	Ug/L S	UNIT S	UNIT S	UNIT S
NA NA ST ST ST ST ST ST ST S	ug/L NA NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	mailer my/L NA	High	1971 NA	ug/L NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	ug/L NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	uyl_L NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
100 100	ug/L NA NA < < 10	Ug/L NA NA C C C C C C	UVAT NA NA C C C C C C UVAT NA NA C C C C C UVAT 1000 1000 C C C C C UVAT 1000 1000 C C UVAT 1000 1000 C C UVAT 1000 1000 C C UVAT C C C UVAT C C C C UVAT C C C UVAT C C C C C UVAT C C C C UVAT C C	UVAL NA NA C C C C C C UVAL NA NA C C C C C C UVAL NA NA C C C C C UVAL NA NA C C C C C UVAL NA NA C C C C C UVAL 100 100 C C UVAL 100 100 C C C UVAL 100 100 C UVAL 100 C C C UVAL 100 C C C UVAL 100 C C UVAL 100 C C UVAL 100 C UVAL 100 C C UVAL 100 C UVAL C C C C UVAL C C C UVAL C C C C U	UgL NA NA C C C C C C	UVAL NA	UVAL NA 100 11 10 11 11 11 12 12
Na	ug/L NA NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	ug/L NA NA <	uy/L NA	uy/L NA	Ug/L NA NA C C C C C C	uy/L	ug/L NA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
Section Sect	ug/L 700 700 < < < < < < < < < < < < <	ug/L 700 700 c c c c c	ug/L 700 700 c c c c c	ug/L 700 700 c c c c c	ug'l	ug'L 700 700 <	ug'L NA NA <1 <1 <1 <1 <1
c chloride ug/L 5 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		1	1	Total Tota	Total Tota	Total Tota	Total Tota
ug.L. 100 100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td> ugL 100 100 </td><td> ugL 100 100 c c c c c </td><td> ugL 100 100 <1 <1 <1 <1 <1 </td><td> ugL 100 100 c1 c1 c1 c1 c1 </td><td> 10 10 100 100 11 11 12 13 14 15 15 15 15 15 15 15</td><td> 10 10 100 100 10 10 10 </td><td> UgL 100 100 < </td></t<>	ugL 100 100	ugL 100 100 c c c c c	ugL 100 100 <1 <1 <1 <1 <1	ugL 100 100 c1 c1 c1 c1 c1	10 10 100 100 11 11 12 13 14 15 15 15 15 15 15 15	10 10 100 100 10 10 10	UgL 100 100 <
roceltiene ug/L 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		mg/L 5 5 5 5 5 5 5 5 5	1 mg/L	1 mg/L 5 5 5 5 5 5 5 5 5	1 mg/L 5 5 5 5 5 5 5 5 5	1 mg/L 5 5 5 5 5 5 5 5 5	https://doi.org/10.004
ethene ug/L 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td> Ug/L 1000 1000 5 5 5 5 5 5 5 5 5</td><td> Ug/L 1000 1000 1</td><td> Ug/L 1000 1000 5 5 5 5 5 5 5 5 5</td><td> Ug/L 5 5 5 5 5 5 5 5 5 </td><td> Ug/L 5 5 1 1 1 1 1 1 1 1</td><td> Ug/L 1000 1000 1 1 1 1 1 1 </td><td> UB/L 1000 1000 5 5 5 5 5 5 5 5 5</td></t<>	Ug/L 1000 1000 5 5 5 5 5 5 5 5 5	Ug/L 1000 1000 1	Ug/L 1000 1000 5 5 5 5 5 5 5 5 5	Ug/L 5 5 5 5 5 5 5 5 5	Ug/L 5 5 1 1 1 1 1 1 1 1	Ug/L 1000 1000 1 1 1 1 1 1	UB/L 1000 1000 5 5 5 5 5 5 5 5 5
ug/L 2 2 <1 <1 <1 11 <1	ug/L 2 2 <1 <1 <1 <1 <1 ug/L 10000 10000 <1	ug/L 2 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	ug/L 2 2 <1 <1 <1 <1 <1 Total mg/L NA NA 0.006 <0.01 <0.01 <0.02 <0.2 <0.2 <0.2 Total mg/L 0.006 0.006 <0.01 <0.01 <0.01 <0.01 <0.01	ug/L 2 2 <	Total Ing'L 2 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <th< td=""><td>ug/L 2 2 <1 <1 <1 II <1 Total ug/L 10000 10000 <1 <1 <1 <1 <1 mg/L NA NA 0.41 <0.2 <0.2 <0.2 <0.2 <0.2 <0.0 mg/L 0.05 0.06 0.06 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/L 2 0.2 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 mg/L 0.05 <0.01 <0.05 <0.02 <0.01 <0.01 <0.01 mg/L 0.05 <0.05 <0.02 <0.02 <0.02 <0.01 <0.01 mg/L 0.04 <0.005 <0.005<td>ug/L 2 2 <1 <1<</td></td></th<>	ug/L 2 2 <1 <1 <1 II <1 Total ug/L 10000 10000 <1 <1 <1 <1 <1 mg/L NA NA 0.41 <0.2 <0.2 <0.2 <0.2 <0.2 <0.0 mg/L 0.05 0.06 0.06 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/L 2 0.2 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 mg/L 0.05 <0.01 <0.05 <0.02 <0.01 <0.01 <0.01 mg/L 0.05 <0.05 <0.02 <0.02 <0.02 <0.01 <0.01 mg/L 0.04 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <td>ug/L 2 2 <1 <1<</td>	ug/L 2 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<
	10000 100000 10000 10000 10000 10000 10000 10000 10000 100	Total mo'l NA NA 1041 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	Total mg/L 10006 10000 <1 <1 <1 <1 <1 <1	1000 10000	Total ug/L 10000 10000 <	Total mg/L 10000 10000 <	Total mg/L 10000 10000 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Notes:
Fron 113 is 1.1.2-Trichloro-1.2.2-trifluoroethane.
Fron 113 is 1.1.2-Trichloro-1.2.2-trifluoroethane.
Exceedance of 1AC 620.410 Class 1 Standards indicated by
Exceedance of 1AC 620.410 Class 1 Standards and Federal Drinking Water MCLs indicated by
NA - Not Sampled
NS - Not Sampled

0.26

o home outel 300 15 Jame 2002 Table 3 (Analytical Sum)

Summary of Analytical Results
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

Parameter Name	Units	35 IAC 620.410 Closs I	Federal	MW-206	MW-207	MW-208	MW-209	MW-210	MW-211	MW-212	MW-213	MW-214	MW-215	MW-216	MW-301	MW-401	MW-402	MW-403	MW-405
		Standard		ZS	1.0	ZS	07	SZ	SZ	SZ	F0	ZS	ZS	ZS	07	ΓO	ZS	97	1.0
Metals/Inorganics - Total (continued)	ontinued)																		
Chromium, total	mg/L	0.1	0.1	<0.005	<0.005	<0.005	<:0.005	900.0	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	SN	<0.005	0.0078	<0.005	SN
Cobalt, total	mg/L	-	ΥZ	<0.05	<0.05	<0.05	<0.05	<:0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	SN	<0.05	<0.05	<0.05	SN
Copper, total	mg/L	0.65	1.3	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	SN	<0.025	<0.025	<0.025	NS
Cyanide, total	mg/L	0.02	0.2	<0.01	10.0>	<0.01	<0.01	<0.01	<0.01	10:0>	<0.01	<0.01	<0.01	<0.01	SN	<0.01	<0.01	<0.01	NS
Iron, total	mg/L	S	ď Z	3.5	6	19.2	2.5	8.2	14.6	24.1	0.1	-	9.7	17.8	SN	8.0	36.7	0.25	NS
Lead, total	mg/L	0.0075	0.015	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	SN	<0.003	<0.003	<0.003	NS
Magnesium, total	mg.L	۲Z	Ϋ́Z	177	77.4	801	6.89	95.7	74	52.3	65.5	62.7	Ξ	72.4	SN	69.7	84.5	8.8	NS
Manganese, total	1/mu	0.15	4Z	0.22	0.028	0.45	0.089	0.26	0.14	0.40	0.14	0.021	01.0	0.21	NS	0.033	1.20	<0.015	SN
Mercury, total	myL	0.005	0.005	<:0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	NS	<0.0002	<0.0002	<0.0002	SN
Nickel, total	mg.L	0.1	٩Z	<0.0>	40.0×	<0.04	<0.04	<0.04	<0.04	₹0.0>	<0.04	<0.04	0.054	<0.0>	NS	<0.04	<0.04	<0.04	SN
Potassium, total	mg/L	۲Z	٧Z	99	26.1	22	\$	5.1	19.2	\$	12	\$	126	6.9	NS	36	9.6	\$	SN
Selenium, total	mg/L	0.05	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NS	<0.005	<0.005	0.0073	NS
Sodium, total	mg/L	ΥZ	۲Z	176	74.6	29.2	59.4	58.9	53	25	147	55.9	825	44.9	SN	67.1	133	109	NS
Vanadium, total	J/gm	۲Z	ΥN	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	SN	<0.05	<0.05	<0.05	SN
Zinc, total	mg/L	S	ΥZ	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NS	<0.02	0.024	0.043	NS
Metals - Dissolved									1]							
Aluminum, dissolved	J/mw	۲Z	ΑN	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	SN	<0.2	<0.2	<0.2	SN
Antimony, dissolved	mg/L	0.006	900.0	<.0.01	10:0>	60.01	<0.01	<0.01	10:0>	<0.01	<0.01	<0.01	<0.01	<0.01	NS	<0.01	<0.01	<0.01	NS
Arsenic, dissolved	mg/L	0.05	10.0	0.23	<0.01	0.014	<0.01	< 0.01	10.0>	<0.01	<0.01	<0.01	<0.01	0.011	NS	<0.01	<0.01	<0.01	SN
Barium, dissolved	mg/L	2	7	0.21	0.28	0.22	<0.2	< 0.2	0.39	0.21	0.20	0.24	0.30	<0.2	NS	0.67	0.21	<0.2	NS
Beryllium, dissolved	mp/L	0.004	0.004	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NS	<0.005	<0.005	<0.005	NS
Boron, dissolved	ng L	2	NA	1.62	0.37	0.54	<0.2	<0.2	0.28	< 0.2	0.43	<0.2	0.67	<0.2	SN	0.61	3.8	0.77	NS
Cadmium, dissolved	J/m	0.00\$	0.005	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	SN	<0.002	<0.002	<0.002	NS
Calcium, dissolved	ng/L	4Z	ΑN	187	137	187	163	192	159	158	159	13	311	193	SN	122	324	-	NS
Chromium, dissolved	mg/L	0.1	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<:0.005	<0.005	<0.005	<0.005	<0.005	SN	<0.005	<0.005	<0.005	SN
Cobait, dissolved	ng/L	_	NA	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NS	<0.05	<0.05	<0.05	NS
Copper, dissolved	mg/L	0.65	1.3	<0.025	<0.025	< 0.025	<0.025	<.0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	NS	<0.025	<0.025	<0.025	NS
Iron, dissolved	mg/L	5	NA	4	3.1	18.4	6.0	7.8	163	25.0	0.15	1.8	6.4	17.8	NS	7.6	2.4	0.09	SS
Lead, dissolved	ng L	0.0075	0.015	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<:0.003	<0.003	<0.003	<0.003	NS	<0.003	<0.003	<0.003	NS
Magnesium, dissolved	nıg/L	ΥN	NA	621	78.7	104	67.2	9.16	82.6	54.7	2.99	71.2	140	78.1	SN	70.5	81.3	6.7	NS
Manganese, dissolved	ng/L	0.15	ΝA	0.25	0.029	0.43	0.085	0.24	0.16	1+0	0.15	0.024	0.34	0.22	NS	0.033	1.10	<0.015	SZ
Mercury, dissolved	J.A.u	0.002	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<:0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	NS	<0.0002	<0.0002	<0.0002	NS
Nickel, dissolved	mg/L	0.1	NA	<0.04	<0.04	<0.04	<0.04	<0.04	÷0.0>	~ 0.0 4	<0.04	<0,04	0.067	<0.04	NS	<0.04	<0.04	<0.04	NS
Potassium, dissolved	ng/L	ΥZ	ΥN	59.8	26.9	21	3.1	<.5	21.1	<5	12.2	۵	191	7.4	NS	37.9	9.1	\$	SZ
Selenium, dissolved	mg/L	0.05	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	0.0059	0.013	<0.005	<0.005	<0.005	<0.005	NS	<0.005	<0.005	<0.005	SN
Sodium, dissolved	mg/L	ΥN	ΝΆ	178	76	27.8	49.9	55.8	09	26	149	66.3	198	49.9	NS	77.6	132	101	SS
Vanadium, dissolved	nıy/L	NA	AN	<0.05	<0.05	<0.05	<0.05	<0.05	<:0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NS	<0.05	<0.05	<0.05	NS
Zinc, dissolved	J/mm	5	ΥN	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NS	<0.02	<0.02	0.053	NS
				Notes:		:	!		ı			:							

Exceedance of IAC 620.410 Class I Standards indicated by

Exceedance of IAC 620.410 Class I Standards and Federal Drinking Water MCLs indicated by

NA - Not Available

NS - Not Sampled

0.26

Table 3
Summary of Analytical Results
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

Parameter Name	Units	35 IAC 620.410	Federal	MW-406	MW-A	MW-B	MW-C	MW-D	MW-E1	MW-E2	MW-F	MW-G	LW-101	LW-102	LW-103
		Standard	MCL	SZ	07	07	07	70	SZ	ΓO	Γ0	ZS	107	07	70
Field Parameters															
Dissolved Oxygen	mg/L	ΥZ	4Z	0.44	00.00	0.59	0.14	00.00	0.84	0.00	0.36	0.00	0.43	0.00	00.0
Ferrous Iron	uidd	A'N	A'N	4.62	2.61	0.94	3.26	3.49	0.91	4.04	1.31	28.2	10.48	AN	16.90
Hd	S.u.	6.5-9.0	Ϋ́	6.89	7.21	7.75	7.53	6.97	7.56	68.9	7.19	7.45	6.88	7.52	6.56
Redox Potential	λE	۲Z	¥Z	96-	-110	-104	-73	-95	49	-92	0	-141	-130	-72	-108
Specific Conductivity	soum	YZ.	AN	2110	1020	0209	789	2100	492	0081	3170	5790	1820	1900	2750
Temperature	deg. C	۲Z	ΑN	16.46	14.60	16.49	18.37	14.66	14.79	13.59	15.56	13.30	17.71	13.69	15.69
Turbidity	릴	Ϋ́Z	_	67.20	3.16	307.00	>1000	8.98	25.40	2.20	96.50	4.79	267.00	89.00	267.00
Volatile Organic Compounds															
1.1.2.2-Tetrachloroethane	ng.L	- VA	ΥN	NS	1>	SN	SN	SN	7	▽	SN	SN	⊽	 -	<3.3
1.2-Dichlorobenzene	n _k /L	009	009	SN	⊽	SS	SN	SN	⊽	₹	SN	SN	⊽	7	<3.3
1,2-Dichloroethane	ug/L	5	5	SN	7	SS	SN	SN	⊽	⊽	SN	SN	⊽	⊽	<3.3
1.2-Dichloroethene	nw.L	70	70	NS	~	SS	SN	SZ	⊽	⊽	SN	SN	⊽	⊽	<3.3
1,4-Dichlorobenzene	ng/L	5.	75	SZ	⊽	SN	SN	SN	⊽	⊽	NS	SN	2.9	-	<3.3
2-Butanone	ng/L	۲N	ΥZ	SN	01×	SN	SN	SZ	01×	0l>	NS	SN	01>	01>	<33
4-Methyl-2-Pentanone	ng/L	ΥN	NA	SN	<10	SN	SN	NS	0I>	01>	NS	SN	<10	> 01	<33
Acetone	ng/L	ΥN	Ϋ́	SN	<10	SN	SN	SN	<10	01>	SN	SN	<10	<10	<33
Benzene	ng/L	5	5	NS	- >	SN	SN	SN	>	⊽	NS	NS	7	01	4.6
Bromodichloromethane	ng/L	ΥN	ΝA	SN	~	SN	SN	SN	⊽	>	NS	NS	7	>	<3.3
Chlorobenzene	ng/L	KN	100	SN	7	SN	SZ	SN	1>	ŀ	NS	SN	6.4	\	8.6
Chloroethane	ng/L	N.A	Y Z	NS	~	SN	SN	SN		· ·	NS	SN	⊽		3.3
Chloroform	ng/L	٧Z	ΥN	NS		NS	NS	NS	7	\ 	NS	NS	7		<3.3
Ethylbenzene	ug/L	700	700	SN	7	NS	SN	SN	7	7	SN	SN	⊽	⊽	91
Freon 113	ng/L	Ϋ́	AN	SN	~	NS	SN	SN	⊽	⊽	SN	SN	7	⊽	<3.3
Methylene chloride	ng/L	5	5	SN	V	NS	SN	SN	₹	7	SN	SN	7	7	<3.3
Styrene	ng/L	001	100	SZ	⊽	NS	SN	NS	⊽	⊽	SN	SN	⊽	⊽	<3.3
Tetrachloroethene	ng/L	5	5	SN		NS	SN	SN	7	⊽	SN	SN	⊽	⊽	<3.3
Toluene	ug'L	1000	1000	SN		SN	SN	SN	~	1>	SN	SN	⊽	7	110
Trichloroethene	ng/L	5	5	SN	⊽	SN	SN	SZ	 ↓	⊽	SN	NS	⊽	⊽	<3.3
Vinyl chloride	ng/L	2	2	SN	7.1	SN	SN	SN	~	⊽	SN	NS	⊽	⊽	<3.3
Xylenes, total	ugel	10000	10000	NS		SN	SN	SN	⊽		NS	NS	7	>	24
Metals/Inorganics - Total															
Aluminum, total	mg/L	۲X	ΥZ	NS	<:0.2	SN	SZ	SN	<0.2	<:0.2	S	NS	<0.2	160	0.83
Antimony, total	mg/L	900 0	0.006	NS	<0.01	NS	SN	SN	10.0>	<0.01	SN	NS	<0.01	<0.01	<0.01
Arsenic, total	mg/L	0.05	10.0	NS	<0.01	NS	NS	SN	<0.01	<0.01	NS	NS	<0.01	<0.01	<0.01
Barium, total	mg/L	7	2	NS	<0.2	NS	NS	NS	<0.2	0.59	SS	SN	0.35	0.37	0.38
Beryllium, total	mg/L	0.004	0.004	SN	<0.005	NS	SN	SN	<0.005	<0.005	SN	SN	<0.005	<0.005	<0.005
Boron, total	mg/L	2	۲Z	NS	0.28	SN	SN	SN	<0.2	0.55	NS	NS	0.41	0.41	98.0
Cadmium, total	mg/L	0.005	0.005	SN	<0.002	NS	SN	SN	<0.002	<0.002	SN	SN	<0.002	<0.002	<0.002
Calcium, total	my'L	A'N	Ϋ́Z	NS	113	NS	SN	NS	22.5	176	NS	NS	338	239	257

Notes:
Freon 113 is 1,1,2-Trichloro-1,2,2-trifluoroethane.
Exceedance of IAC 620.410 Class I Standards indicated by
Exceedance of IAC 620.410 Class I Standards and Federal Drinking Water MCLs indicated by
NA - Not Available
NS - Not Sampled

0.26

Summary of Analytical Results
Second Quarter 2002 Groundwater Monitoring Event
Yeoman Creek Landfill
Waukegan, Illinois

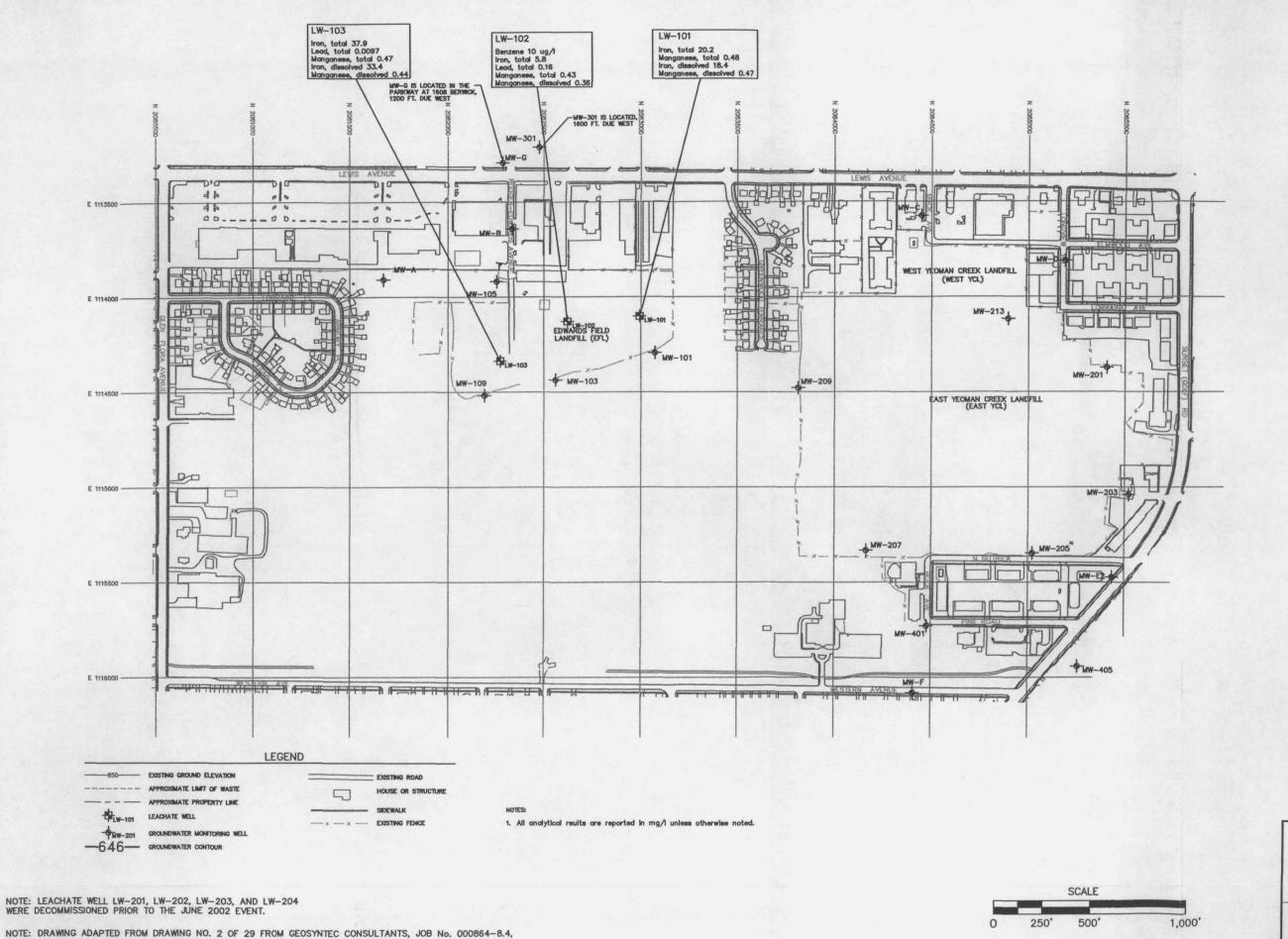
Parameter Name	Units	35 1AC 620.410	Federal	MW-406	MW-A	MW-B	MW-C	MW-D	MW-E1	NIW-E2	MW-F	MW-G	LW-101	LW-102	LW-103
		Standard	MICE	ZS	93	07	07	07	ZS	07	97	ZS	70	ΓO	10
Metals/Inorganics - Total (continued)	ontinued)														
Chromium, total	J/Rw	0.1	1.0	SN	<0.005	SN	NS	NS	<0.005	<0.005	SN	SN	<0.005	<0.005	0.012
Cobalt, total	mg/L	-	ΑN	SN	<0.05	NS	SN	SN	<0.05	<0.05	SN	NS	<0.05	<0.05	<0.05
Copper, total	mg/L	0.65	1.3	SN	<0.025	NS	SN	NS	<0.025	<0.025	SN	SN	<0.025	<0.025	<0.025
Cyanide, total	mg/L	0.02	0.2	SZ	<0.01	SN	SZ	SN	<0.01	<0.01	SN	NS	<0.01	<0.01	<0.01
Iron, total	mg/L	S	ΨZ	SN	2.9	NS	NS	SN	0.94	4	SZ	SS	20.2	5.8	37.9
Lead, total	7/Siu	0.0075	0.015	SN	< 0.003	NS	SN	NS	<0.003	<0.003	SN	SN	0.0039	0.016	0.0097
Magnesium, total	mg/L	Y Z	٧Z	SZ	74.9	SN	SZ	SS	5.3	7.46	SN	SN	71.4	132	123
Manganese, total	mg/L	0.15	YZ.	SZ	0.028	NS	SN	SN	<0.015	0.079	SN	SN	0.48	0.43	0.47
Mercury, total	mg/L	0.002	0.002	SN	<0.0002	NS	NS	SN	<0.0002	<0.0002	SN	SN	<0.0002	<0.0002	<0.0002
Nickel, total	mg/L	0.1	Ϋ́	SN	<0.04	SN	NS	SN	<0.0>	<0.04	SZ	SN	×0.04	<0.04	<0.04
Potassium, total	mg/L	A'N	4Z	SN	\$	NS	SN	SN	61	22.3	SN	SN	6.3	20.9	33.5
Selenium, total	mg/L	0.05	0.05	SX	<0.005	NS	SX	SN	<0.005	<0.005	SZ	SN	<0.005	<0.005	<0.005
Sodium, total	, mg/L	ΥZ	AZ.	SZ	38	SN	SZ	NS	71.6	==	SN	SN	11	43.5	158
Vanadium, total	mg/L	NA	AN	SN	<0.05	SN	SN	NS	<0.05	<0.05	SN	SN	<0.05	<0.05	<0.05
Zinc, total	ng/L	5	AN	SN	<0.02	NS	SN	NS	0.46	<0.02	SN	NS	<0.02	0.039	0.071
Metals - Dissolved															
Aluminum, dissolved	J/gui	NA	ΥN	SN	<0.2	SN	SN	SN	<0.2	<0.2	SN	SN	<0.2	<0.2	0.51
Antimony, dissolved	mg/L	0.006	0.006	NS	<0.01	NS	SN	SN	10'0>	<0.01	SN	NS	<0.01	<0.01	<0.01
Arsenic, dissolved	nw.L	0.05	0.01	NS	<0.01	NS	SN	NS	10.0>	<0.01	SN	NS	<0.01	<0.01	<0.01
Barium, dissolved	nng/L	2	2	NS	<0.2	SN	SN	NS	<0.2	0.57	SN	NS	0.36	0.34	0.31
Beryllium, dissolved	mg/L	0.004	0.004	NS	<0.005	SN	SN	NS	<0.005	<0.005	SN	NS	<0.005	<0.005	<0.005
Boron, dissolved	1/8m	7	NA	SN	0.28	SN	SN	NS	<0.2	0.53	SN	SN	0.43	0.41	0.94
Cadmium, dissolved	J/gm :	0.005	0.005	SN	<0.002	NS	SN	NS	<0.002	<0.002	SN	SN	<0.002	<0.002	<0.002
Calcium, dissolved	mg/L	N.	A.	NS	116	NS	SN	SN	25.6	170	SN	SS	341	232	246
Chromium, dissolved	J/But	0.1	0.1	NS	<0.005	NS	SN	SN	<0.005	<0.005	NS	NS	<0.005	<0.005	0.013
Cobalt, dissolved	J/du	-	ΥZ	NS	<0.05	SN	SN	SN	<0.05	<0.05	NS	SN	<0.05	<0.05	<0.05
Copper, dissolved	mg/L	0.65	1.3	NS	<0.025	SN	NS	NS	<0.025	<0.025	NS	NS	<0.025	<0.025	<0.025
Iron, dissolved	mg/L	5	A'N	NS	2.9	NS	NS	NS	0.076	3.9	SN	NS	18.4	- 1	33.4
Lead, dissolved	mg/L	0.0075	0.015	NS	<0.003	NS	NS	SN	<0.003	<0.003	NS	SN	<0.003	<0.003	<0.003
Magnesium, dissolved	mg/L	Y Z	ΥZ	ZS	7.97	SS	SN	SZ	8.7	91.5	SN	NS	72	128	121
Manganese, dissolved	nıyL	0.15	NA AN	NS	0.028	NS	NS	SN	<0.015	0.075	NS	NS	0 47	0.36	0.44
Mercury, dissolved	J.Su	0.002	0.007	SN	<0.0002	SN	SZ	SN	<0.0002	<0.0002	SN	SN	<0.0002	<0.0002	<0.0002
Nickel, dissolved	mg/L	0.1	NA AN	SZ	40.0×	NS	SZ	SN	<0.04	<0.04 40.04	SN	SN	<0.04	<0.04	<0.04
Potassium, dissolved	mg/L	Y.	ΥN	SN	\$	NS	NS	SN	1.7.1	21.6	NS	SN	6.4	19.1	35.2
Selenium, dissolved	mg/L	0.05	0.05	NS	<0.005	SN	SN	SN	<0.005	<0.005	NS	SN	<0.005	<0.005	<0.005
Sodium, dissolved	mg/L	NA	Y Y	SN	38.7	NS	NS	NS	2/6	137	NS	SN	=	41	163
Vanadium, dissolved	mg/L	Y.Y	ΝΑ	SN	<0.05	NS	SN	NS	<0.05	<0.05	NS	SN	<0.05	<0.05	<0.05
Zinc, dissolved	mg/L	5	Ϋ́	NS	<0.02	NS	NS	NS	0.3	<0.02	SN	NS	<0.02	<0.02	<0.02
				Motor			į								

Notes:

Exceedance of IAC 620.410 Class I Standards indicated by

Exceedance of IAC 620.410 Class I Standards and Federal Drinking Water MCLs indicated by

NA - Not Available


NS - Not Sampled

0.26

JUNE 2002 IAC 620.410 LEACHATE EXCEEDENCES YEOMEN CREEK LANDFILL WAUKEGAN, ILLINOIS

Weaver Boos & Gordon, Inc. GRIFFITH, IN CHICAGO, IL ALBUQUERQUE, NM (312) 922-1030

DRAWN BY: RGB DATE: 09/03/02

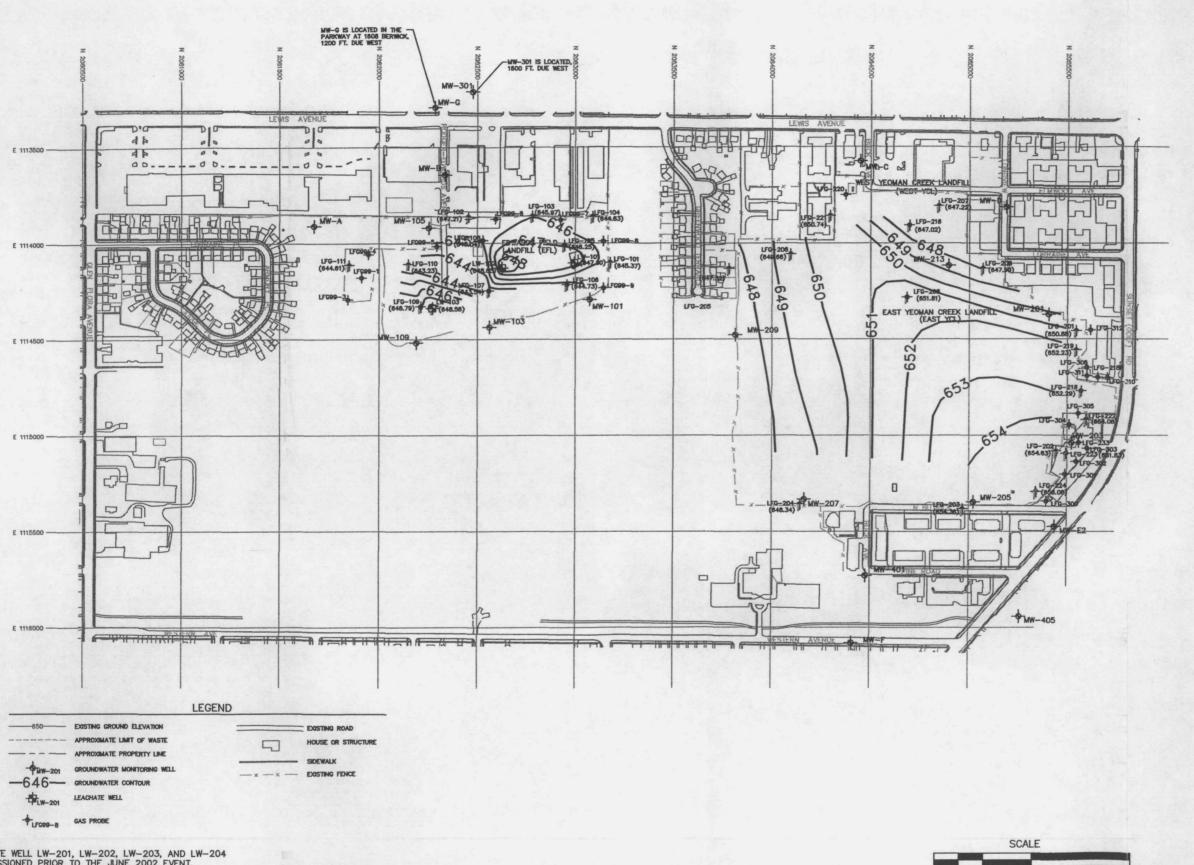
GLEN ELLYN, IL SPRINGFIELD, IL FILE: 0081300-04 REVIEWED BY: AP CAD:0602LEACH_EXCEED FIGURE 3

NOTE: DRAWING ADAPTED FROM DRAWING NO. 2 OF 29 FROM GEOSYNTEC CONSULTANTS, JOB No. 000864-8.4, DATED APRIL 27, 2001 (REMEDIAL DESIGN, YEOMAN CREEK LANDFILL SUPERFUND SITE, WAUKEGAN, ILLINOIS). COPYRIGHT @ 2002 WEAVER BOOS & GORDON, INC. ALL RIGHTS RESERVED.

NORTH

NOTE: WATER LEVEL OBTAINED ON JUNE 21 & 22, 2002.

NOTE: DRAWING ADAPTED FROM DRAWING NO. 2 OF 29 FROM GEOSYNTEC CONSULTANTS, JOB No. 000864-8.4, DATED APRIL 27, 2001 (REMEDIAL DESIGN, YEOMAN CREEK LANDFILL SUPERFUND SITE, WAUKEGAN, ILLINOIS). COPYRIGHT © 2002 WEAVER BOOS & GORDON, INC. ALL RIGHTS RESERVED.


SCALE
0 250' 500' 1,000'

JUNE 2002
POTENTIOMETRIC SURFACE MAP
FOR LOWER OUTWASH
YEOMEN CREEK LANDFILL
WAUKEGAN, ILLINOIS

Neaver Boos & Gordon, Inc.
GRIFTITH, IN
ALBUQUERQUE, NM (312) 922-1030 SPRINGFIELD, IL

GRIFFITH, IN CHICAGO, IL GLEN ELLYN, IL SPRINGFIELD, IL DRAWN BY: REK DATE: 08/15/02 FILE: 0081300-04

REVIEWED BY: AP CAD:0602GWLOW.DWG FIGURE 4

JUNE 2002 POTENTIOMETRIC SURFACE MAP FOR LEACHATE WELLS

YEOMEN CREEK LANDFILL WAUKEGAN, ILLINOIS

Weaver Boos & Gordon, Inc. GRIFFITH, IN CHICAGO, IL ALBUQUERQUE, NM (312) 922-1030 GLEN ELLYN, IL SPRINGFIELD, IL

DRAWN BY: REK DATE: 08/15/02 FILE: 0081300-04
REVIEWED BY: AP CAD:0602LEACHATE.DWG FIGURE 5

NOTE: LEACHATE WELL LW-201, LW-202, LW-203, AND LW-204 WERE DECOMMISSIONED PRIOR TO THE JUNE 2002 EVENT.

NOTE: DRAWING ADAPTED FROM DRAWING NO. 2 OF 29 FROM GEOSYNTEC CONSULTANTS, JOB No. 000864—8.4, DATED APRIL 27, 2001 (REMEDIAL DESIGN, YEOMAN CREEK LANDFILL SUPERFUND SITE, WAUKEGAN, ILLINOIS). COPYRIGHT @ 2002 WEAVER BOOS & GORDON, INC. ALL RIGHTS RESERVED.

Attachment 1 Data Validation Report

E^xponent

September 9, 2002

SEP 1 2002

WEAVER BOOS & GORDON, INC.

Exponent 4000 Kruse Way Place Building 2, Suite 285 Lake Oswego, OR 97035

telephone 503-636-4338 facsimile 503-636-4315 www.exponent.com

Amy Powers Weaver Boos & Gordon, Inc. 200 South Michigan Avenue Chicago, Illinois 60604

Subject: Data Validation Report for Yeoman Creek Landfill Superfund Site

Exponent Contract No. 8601524.001 0601

Dear Amy:

This letter documents the results of a quality assurance (QA) review of data reported for the analysis of inorganic and organic compounds associated with the associated with the Yeoman Creek Landfill Superfund Site. Five data packages were submitted to Exponent® by Severn Trent Services for validation in work orders A2G190236, A2G020228, A2G030266, A2F270200, and A2F290108.

The QA review was conducted to verify that the laboratory quality assurance and quality control (QA/QC) procedures were documented and that the quality of the data is sufficient to support their use for the intended purposes. The QA review included evaluating the applicable QC results reported by the laboratory. A summary of the overall quality of the analytical results and the data validation procedures used to complete the analyses is presented below.

A bulleted list of the qualifiers assigned to selected data in all the work orders is included in Attachment A of this letter. Qualifiers assigned during the QA review were also added to the electronic spreadsheets in a column labeled "Validation Qualifier" that was inserted into each spreadsheet. The electronic spreadsheets are included in the CD-ROM accompanying this letter.

Overall Quality of the Analytical Results

The results for all applicable QC procedures employed by the laboratory during analysis of the samples were generally acceptable. Some sample results required qualification because one or more QC criteria were not met. For the organic target analyte analyses, the laboratory assigned a *J* flag to all results reported as detected at a concentration between the method detection limit and method reporting limit to indicate these results should be considered estimated. These laboratory-qualified data were additionally assigned a *JQ* qualifier during the QA review. For the metals analyses, the laboratory assigned a *B* flag to all results reported as detected at a concentration between the instrument detection limit and method reporting limit. For these laboratory-flagged data, no validation qualifiers were required.

A summary of the qualified data is presented in Attachment A.

Amy Powers September 9, 2002 Page 2

Data Validation Procedures

Data validation procedures included evaluating the sample results and applicable QC results reported by the laboratory. The data were validated in accordance with guidance specified by the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (U.S. EPA 1994) for metals and conventional parameter analyses and the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (U.S. EPA 1999) for organic analyses, as specified in the project quality assurance project plan (WBG 1999). Data qualifiers were assigned during the QA reviews if applicable control limits were not met, in accordance with U.S. EPA (1994, 1999) and the QC requirements stated in the methods. All data qualified as estimated (J) have an acceptable degree of uncertainty and represent data of good quality and reasonable confidence (U.S. EPA 1989).

The following laboratory deliverables were reviewed during data validation:

- The case narrative discussing analytical problems (if any) and procedures
- Chain-of-custody documentation
- Instrument calibration data
- Method blanks to check for laboratory contamination
- Results for laboratory control sample (LCS) analyses (i.e., blank spikes) and matrix spike/matrix spike duplicate (MS/MSD) analyses to assess analytical accuracy
- Results for laboratory duplicate sample and/or MSD analyses, as applicable, to assess analytical precision
- Results for field quality control samples
- Analytical results for analyses performed.

Should you have any questions regarding the information presented herein, please call me at (503) 636-4338.

Sincerely,

James J. Mc Ateer, Jr.

Project Manager

cc: Mike Maxwell, Weaver Boos & Gordon

Attachments

g:\docs\8601524.001 0601\wbgyeorman\etter.doc

Amy Powers September 9, 2002 Page 3

References

U.S. EPA. 1989. J-qualified CLP data and recommendations for its use. Memorandum from H.M. Fribush, Technical Project Officer, Analytical Operations Branch, to S. Wells, Chief, NPL Criteria Section, Site Assessment Branch. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA. 1994. USEPA Contract Laboratory Program national functional guidelines for inorganic data review. EPA 540/R-94/013. February 1994. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.

U.S. EPA. 1999. USEPA Contract Laboratory Program national functional guidelines for organic data review. EPA/540/R-99/008. October 1999. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC.

WBG. 1999. Pre-design data collection work plan, Appendix B: quality assurance project plan for Yeoman Creek Landfill Superfund Site. Revision II, revised August 1999. Prepared by Parsons Engineering Science, Inc., Oak Brook, IL. Prepared for Weaver Boos & Gordon, Chicago, IL.

 $\mathbf{E}^{\mathcal{X}^*}$

Attachment A

Qualifiers Assigned to Data

Attachment A

Summary of Data Qualifiers

The following quality control (QC) criteria were not met, resulting in the qualification of selected data:

- Five chromium results were restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G190236 because the metal was detected in the associated method blanks.
- One potassium result was restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G190236 because the metal was present in the associated method blanks.
- Two aluminum results were restated as undetected (assigned a *UF* qualifier) at the concentration reported in work order A2G190236 because the metal was present in the associated field blank.
- All acetone, 2-butanone, and 2-hexanone results (10 samples and 1 trip blank) were globally qualified as estimated (assigned a *JC* qualifier) in work order A2G30266 because percent deviation (%D) control limits were exceeded in the continuing calibration verification samples.
- All acetone results (10 samples and 1 trip blank) were restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G030266 because the compound was present in the associated method blank.
- One methylene chloride result was restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G030266 because the compound was present in the associated method blank.
- Three 2-butanone results were restated as undetected (assigned a *UF* qualifier) at the concentration reported in work order A2G030266 because the compound was present in the associated trip blank.
- One boron result was restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G030266 because the metal was present in the associated method blank.
- One methylene chloride result was restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2F290108 because the compound was present in the associated method blank.

- All acetone results (5 samples) were globally qualified as estimated (assigned a *JC* qualifier) in work order A2F290108 because %D control limits were exceeded in the continuing calibration verification samples.
- Ten potassium and 5 zinc samples were qualified as estimated (assigned a *JE* qualifier) in work order A2F290108 because %D control limits were exceeded in the serial dilution sample.
- Fifteen copper and 4 potassium results were restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2F270200 because the metals were present in the associated method blanks.
- Twenty acetone, 9 2-butanone, 3 bromomethane, and 3 2-hexanone results were qualified as estimated (assigned a *JC* qualifier) in work order A2F270200 because %D control limits were exceeded in the continuing calibration verification samples.
- Eighteen acetone results were restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2F270200 because the compound was present in the associated method blanks.
- One 2-butanone result was restated as undetected (assigned a *UF* qualifier) at the concentration reported in work order A2F270200 because the compound was present in the associated trip blank.
- One methylene chloride result was restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G020228 because the compound was present in the associated method blank.
- Nine acetone results were restated as undetected (assigned a *UB* qualifier) at the concentration reported in work order A2G020228 because the compound was present in the associated method blanks.
- Nine acetone, 9 2-butanone, and 9 2-hexanone results were qualified as estimated (assigned a *JC* qualifier) in work order A2G020228 because %D control limits were exceeded in the continuing calibration verification samples.
- One boron, 1 calcium, 1 magnesium, 1 potassium, 14 aluminum, and 14 copper results were restated as undetected (assigned a UB qualifier) at the concentration reported in work order A2G20228 because the metals were present in the associated method blanks.
- Nine aluminum, 9 boron, 9 calcium, 9 magnesium, 9 potassium, and 9 sodium results were qualified as estimated (assigned a *JS* qualifier) in work order A2G20228 due to low recoveries in the matrix spike samples.

Qualifiers assigned during the QA review were also added to the electronic spreadsheets in a column labeled "Validation Qualifier" that was inserted into each electronic spreadsheet. The electronic spreadsheets are included in the CD-ROM accompanying this letter.

Note: In this report, descriptors (i.e., C, L, and S) accompany the J or R qualifiers. These descriptors were included to define the reason for qualification.

13 September 2002 CHE8092

Mr. Matthew J. Ohl Project Coordinator United States Environmental Protection Agency Region V- Mail Code SR-6J 77 W. Jackson Boulevard Chicago, IL 60604

Subject: Construction-Phase Groundwater Monitoring Report – June 2002

Yeoman Creek Landfill Superfund Site

Waukegan, Illinois

Dear Mr. Ohl:

Enclosed is your copy of the June 2002 Groundwater Monitoring Report. Other copies of this report will be distributed separately. If you have any questions, please do not hesitate to contact the undersigned at (312) 658-0500 x 13.

Sincerely,

John Seymoor, P.K. YCRG Project Coordinator

cc: Patel (RF Weston)

E. Rednour (IEPA)

E. Karecki (USEPA)

T. Goeks (USEPA)

S. Davis (DNR)

Technical Committee

E:\CHE8092-YeomanCreek\300-Communications\310-Correspondence\OhlNoticeLtr -13 Sep 2002.doc